Recitation 9: Martingale Convergence Theorems

Lecturer: Chenlin Gu

Exercise 1 (Question 1 of course). *Recall the definition of U.I. condition. Prove two practical conditions to prove U.I. condition for* $(X_i)_{i \in I}$:

- 1. There exists p > 1, such that $\sup_i \mathbb{E}[|X_i|^p] < \infty$.
- 2. There exists $Z \in L^1$, $Z \ge 0$, such that for every X_i , $|X_i| \le Z$.

Exercise 2 (Question 2 of course). *Recall the definition of backward martingale and use it to prove the law of large number of version* L^1 .

Exercise 3. Prove the following theorem: A sequence X_n converges to X in L^1 if and only if it converges in probability to X and it is uniformly integrable.

Exercise 4. Let $(X_i)_{i \in \mathbb{N}}$ be i.i.d. random variables such that $\mathbb{E}[X_1] = 0$ and $\operatorname{Var}[X_1] = \sigma^2 < \infty$. Let $S_n = \sum_{i=1}^n X_i$ and prove that for x > 0

$$\mathbb{P}[\max_{1 \le i \le n} S_i > x] \le \frac{1}{x^2} \operatorname{Var}[S_n].$$

Exercise 5 (Galton-Watson process). Let $(X_{n,i})_{n,i\in\mathbb{N}}$ be i.i.d. random variables taking value in \mathbb{N} with finite expectation

$$\mathbb{E}[X_{1,1}] = m < \infty,$$

and $(Z_n)_{n \in \mathbb{N}}$ be a Galton-Watson process defined by

$$Z_0 = 1,$$
 $Z_{n+1} = \sum_{i=1}^{Z_n} X_{n+1,i}.$

We also define its natural filtration $\mathcal{F}_n = \sigma((X_{j,i})_{j \leq n, i \in \mathbb{N}})$ and the time of extinction

$$\tau = \inf\{n | Z_n = 0\}.$$

- 1. Prove that τ is a stopping time with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}}$.
- 2. Prove that if m < 1, then $\tau < \infty$ almost surely.
- 3. Prove that $M_n := \frac{Z_n}{m^n}$ is a martingale with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}}$, and converges almost surely to a limit M_{∞} .
- 4. What is the limit for the case m < 1? Does M_n converge in L^1 to M_∞ ?
- 5. Suppose that $\operatorname{Var}[X_{i,i}] = \sigma^2 < \infty$, prove that for the case m > 1, $M_n \xrightarrow{L^2} M_\infty$. Then deduce $\mathbb{P}[\tau < \infty] < 1$.